Course curriculum

  • 1

    Section 1: Course introduction, tips, environment setup -- All you need to start!

    • A message from the instructor!

    • PreFace - Course overview

      FREE PREVIEW
    • Tips to successful in the filed of Data Science

    • Course Introduction

    • Setup jupyter notebook and environment - part 1

    • Setup jupyter notebook and environment - part 2

    • Environment setup - Other Options/suggestions

    • Please download the course material

    • Please read.

    • Possible update in the course.

  • 2

    Section 2: Python Essential for Data Science & Machine Learning

  • 3

    Section 3: NumPy Essentials

  • 4

    Section 4: Pandas Essentials

  • 5

    Section 5: Python for Data Visualization using matplotlib

  • 6

    Section 6: Seaborn

  • 7

    Section 7: Python for Data Visualization using pandas

  • 8

    Section 8: Python for interactive & geographical plotting using Plotly and Cufflinks

  • 9

    Section 9: Capstone Project - Python for Data Analysis & Visualization

  • 10

    Section 10: Python for Machine Learning (ML) - scikit-learn - Linear Regression Model

  • 11

    Section 11: Python for Machine Learning - scikit-learn - Logistic Regression Model

  • 12

    Section 12: Python for Machine Learning - scikit-learn - K Nearest Neighbors

  • 13

    Section 13: Python for Machine Learning - scikit-learn - Decision Tree and Random Forests

  • 14

    Section 14: Python for Machine Learning - scikit-learn -Support Vector Machines (SVMs)

  • 15

    Section 15: Python for Machine Learning - scikit-learn - K Means Clustering

  • 16

    Section 16: Python for Machine Learning - scikit-learn - Principal Component Analysis (PCA)

  • 17

    Section 17: Recommender Systems with Python - (Additional Topic)

  • 18

    Section 18: Python for Natural Language Processing (NLP) - NLTK - (Additional Topic)